Linear Almost Poisson Structures and Hamilton-jacobi Equation. Applications to Nonholonomic Mechanics
نویسندگان
چکیده
In this paper, we study the underlying geometry in the classical Hamilton-Jacobi equation. The proposed formalism is also valid for nonholonomic systems. We first introduce the essential geometric ingredients: a vector bundle, a linear almost Poisson structure and a Hamiltonian function, both on the dual bundle (a Hamiltonian system). From them, it is possible to formulate the Hamilton-Jacobi equation, obtaining as a particular case, the classical theory. The main application in this paper is to nonholonomic mechanical systems. For it, we first construct the linear almost Poisson structure on the dual space of the vector bundle of admissible directions, and then, apply the Hamilton-Jacobi theorem. Another important fact in our paper is the introduction of the notion of morphisms preserving the Hamiltonian system; indeed, this concept will be very useful to treat with reduction procedures for systems with symmetries. Several detailed examples are given to illustrate the utility of these new developments.
منابع مشابه
Linear Almost Poisson Structures and Hamilton-jacobi Theory. Applications to Nonholonomic Mechanics
In this paper, we study the underlying geometry in the classical Hamilton-Jacobi theory. The proposed formalism is also valid for nonholonomic systems. We first introduce the essential geometric ingredients: a vector bundle, a linear almost Poisson structure and a Hamiltonian function, both on the dual bundle (a Hamiltonian system). From them, it is possible to formulate the Hamilton-Jacobi the...
متن کاملHamilton–jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints
We extend Hamilton–Jacobi theory to Lagrange–Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton–Jacobi equation as the Dirac–Hamilton–Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the th...
متن کاملNonholonomic Hamilton-Jacobi Theory via Chaplygin Hamiltonization
This document is a brief overview of the Hamilton-Jacobi theory of Chaplygin systems based on [1]. In this paper, after reducing Chaplygin systems, Ohsawa et al. use a technique that they call Chaplygin Hamiltonization to turn the reduced Chaplygin systems into Hamiltonian systems. This method was first introduced in a paper by Chaplygin in 1911 where he reduced some nonholonomic systems by the...
متن کاملNonholonomic Hamilton–jacobi Equation and Integrability
We discuss an extension of the Hamilton–Jacobi theory to nonholonomic mechanics with a particular interest in its application to exactly integrating the equations of motion. We give an intrinsic proof of a nonholonomic analogue of the Hamilton–Jacobi theorem. Our intrinsic proof clarifies the difference from the conventional Hamilton–Jacobi theory for unconstrained systems. The proof also helps...
متن کاملGeometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems
This paper surveys selected recent progress in geometric mechanics, focussing on Lagrangian reduction and gives some new applications to nonholonomic systems, that is, mechanical systems with constraints typified by rolling without slipping. Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poinca...
متن کامل